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ON ROTATIONAL CONICAL FIQW*

By Carlo Ferrari

SUMMARY

The author determines some general properties of isoenergetic rota-
tional conical fields. For such fields, provided the physical parameters
of the fluid flow are known on a conical reference surface Z, it being
understood that they satisfy certain imposed conditions, it is shown how
to construct the holographs in the various meridional semiplanes, as
the envelope of either the tangents to the holographs or of the osculatory
circles.

ANALYSIS

1. A method for determining the field of flow about a cone of revo-
lution, the axis of which is aligned with the direction of the impinging
supersonic stream, which is taken to have a uniform velocity distribution
sufficiently far ahead of the body before the conical field is created,
was developed by Busemann (reference 1) at an early date. Several years
later the present author (reference 2) extended Busemann’s procedure to
cover the case of a cone of any shape whatsoever situated in the flow,
so that its axis was at any arbitrary finite angle of attack; that inves-
tigation was confined, however, solely to irrotational conditions. With
proper alterations, nevertheless, this treatment of the yawed arbitrary-
shaped conical surface can be applied.to the case of rotational+flows.
The purpose of the present investigation is just to give the relationships
which permit one to draw the holographs for the flow, in reference to
the various meridional planes through the body axis, in the case where
the motion is defined by a rot~tional field of conical flow with arbitrary
specification of the cone shape.

2. Upon the mere &ssumption of isoenergetic flow in a perfect fluid,
one may write the equations of motion in the form (reference 3):

.,,

*Original Italian Report appeared as Sui Moti Conici Rotazionali in
Onore di Modesto Panetti y published by L’Aerotecnica, Associazione Tecnica
Automobile, and La Termotecnica, Turin, Italy, November 25, 1950.
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(1)

wherein R is the universal gas constant, 7 is the adiabatic exponent,
V1 is the limiting velocity obtained when the flow exp+andsto a vacuum,

C is the velocity of sound, S is the entropy, and V is the fluid
velocity.

Upon employment of a spherical coordinate system (r,e,Q), as depicted

in figure 1, the components of
curl ?

are taken as wr,
v~

k@, and W&);

where Wr is the radial component, Wq is the component lying in the

meridional plane and.normal to the radius vector, while we is the com-

ponent that is perpendicular to the meridional plane. Likewise, the
corresponding components of ?/V7 are denoted by Vr j Vq, and v6.

Between these components there subsist the following relationships

a( rvEJ)

-sv-
1 hr

——=rw
sin q) &3 ‘Y

Based on the assumption that
scalar equations are derived in a
the equations (l):

(2)

dr “

the flow is conical, the following
straightforward way from the first of
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.Jczas
‘Owr

——
- ‘rw(3 ryR&p

wherein /
C2 = (72VZ2.

The set of equations (3) are not independent of each other as is
evident from consideration of equation (1) directly, but they are
related through the expression

-)
VxgradS=O

which, for a conical field, becomes

as Ve 1 as—. -. — .
b ‘cpsin q be

From the second of equations (1), upon use of the hy-pothesis
the flow is conical, and,by taking into account the relationships
by equations (2) and (4’), one then obtains that .

This expression differs only by the presence of the rotationality
from the analogous relationship derived in reference 2 previously

inter-

(4)

(4’)

that
express ed

(5)

terms
mentioned.

-, ,.-,----,.,..., -.,. -, , , ,,... ,, ,.,. .. ... . .... . .... .. .... .. . .. .— .——..,-.——.——— —
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3. By means of equations (3), (4), and (4’) one may deduce some
interesting properties of conical fields. Let it be assumed that one of
the stream surfaces of the flow is conical (this will be the case for a
field of flow arising by the action of a uniform supersonic stream
impinging from any direction whatsoever upon a conical-shaped obstacle);
it will be convenient to designate this surface as xc. Let the versor

of any arbitrary general one of the generatrices of the conical sur-
face Zc be denoted by ?, then grad S x? = O. On the other hand, if

the versor of the tangent to any streamline whats~ever that is traced ‘
upon the surface of the cone Zc is’denoted by T then it is true, in

-addition, that grad S X ~= O. It is evident, ther~ore, that grad S
is perpendicular to the surface Xc; that is, the above-described conical

surface is a surface of constant.entropy.

Besides, let it be assumed that””the conical flow is s~etric with

respect to the meridional plane O = i90° (this will be the case already
mentioned for the field of flow about a conical-shaped obstacle). At
all the points of this plane it is true that ve = O. One then deduces,

upon the basis of the first of equations (3), that we = O provided

that Vq is not zero everywhere. On account of this , and through

utilizing the third of equations (3) it follows that &=o. Thus even
h

the meridional plane of symmetry for the conical field is itself a con-
stant entropy surface, and at this plane the flow is irrotational as is
easily deduced upon taking cognizance of equations (2).

In conjunction with the result obtained above one can derive from
this latter fact that, for the case of flow about a conical obstacle, the
shock wave in the two semiplanes 6 . 90° and 19= -90° must produce
the same change in direction of the stream velocities; and so the tangents
to the trace of the shock wave in these semiplanes are symmetrically
inclined with respect to the undisturbed stream velocity vector. Now

let us consider an obstacle in the form of a right circular cone. Upon

the surface of this cone it is true that &_

be
- Vq = O, and therefore one

gets that Wq = O. Thus the following relationship results

)

1 avr
ve=-—

sin q be
(6)
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On the cone one can always express the Vr values as a periodic

function of (3,and thus Vr . B. + X Bn sin ne. It follows that on

I the cone’s surface the peripheral velocity component is given.by
/
,

1v@=— Z Bnn cos nf3
sin cp

just as in the case of irrotational flow.
*

Now, if we let the angle of incidence of the axis of the cone be
denoted by ~, then the expression for Vr becomes simply

/

‘r =Bo-tB1sin(3

if only terms of the order of magnitude of P are taken into account.
Since this is true, then because B1 is proportional to 13,the Bn

coefficient& have to be at least as small as P*.\

The relationship given by equation (6) may be generalized for the
case of a cone of any shape whatsoever. It is assumed for this purpose
that the cone’s surface is divided up by a network of orthogonal coordi-
nate lines lJl and 02 (r = const. and Q = const., respectively).

The former of which are the intersections of the spheres with radius r
upon the cone under consideration , while the latter are the generatrices
of the cone itself. At an arbitrary general point P on the cone the
length of the linear element dcrl can be written as: dcrl= rhl (e) de

while the length of the linear element do* along the line rJ2 is

given by: da2 = dr.

, The component, in the direction of’the normal to the cone at the
point P, of the curl is

‘n = A aFlhlr)-2rhl &

where VI and V2 are now the velocity components in the direction

of o~ and U2, respectively. On the other hand, upon referring to

the first of equations (l), it is still true that Wn = O, and on account

“of this it is evident that:
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~ av2
vl= q-&- (6’)

If the component of velocity in the direction of the radius vector is
expressed as a periodic function of 0, as is still permissible, then
equation (6’) immediately furnishes the means of obtaining the corre-

sponding expression for VI.

4. It is now easy to determine how to continue the construction of
the flow field downstream of a given conical reference surface, Z, upon

which the physical conditions of the flow are assumed known. Let the
equation of the conical reference surface, Z, be given by

From the relationship

wherein

@’g

one obtains

(7)

(8)

provided qI is expressed

above relationship allows

surface Z.

as a function of 6 as in equation (7). The

$ at the points of theone to calculate

In like manner, by use of the equation

()

avq avP + ~ avI

Tx =%- S_
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and by setting

8VV
—+vr.=R1
b

it is found that

7

(9)

(lo)

wherein the Al are calculated at the points of the conical surface
through means of the relation

(lo’)

Finally, it is found (the intermediate steps are omitted, and just
the final result presented) that:

IWQ ‘R2=—
V62 Vg 1

2
-Vq=y -——A3

“Jq sing

where the quantities ~ and A3 ~e the expre~ions:

(11)

(~=(a-=%-v’cOs’+A+:%in’
Vr )‘r ~3-—vesincp+— (11’)

‘v ‘~
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(11”)

and their values are known on the reference conical surface, Z, and thus
so also is the value of R2 .

By means of equation (5), therefore, one obtains

–% ’-(’+$)cot’-(+a(vr++%)-2

sin (p

(12)

Thus it is possible to calculate the values of Rl at the points of
the reference conical surface, Z. This formula is the natural extension
of the analogous relationship already derived in reference 2 in the case
of an irrotational flow.

The complete solution of the problem as to how to continue constructing
the flow field downstream of the reference surface x is thus presented
by the formulations given as equations (8), (11), (12), and the additional
equation (13), since it is also evident that

.. . . . .
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.,. -----5. The-graph of
eral semiplane, e=

any point whatsoever

the-hodograph corresponding to an arbitrary gen-
const., is represented in figure 2. Let P be

on this hodograph, and let ~ signify the vec-

In addition let ? again denote the versor that

has the sense and d&ection of the radius vector in the semiplane in

question, and let T now be the versor normal to ~ in the semiplane
and oriented in the sense of an increasing q. With these conventions

it follows that :x ~ = O and therefore it becomes clear that the
@

tangent to the hodograph at the point P is perpendicular to the above-

defined vector z. Thus this tangent is inclined to the direction of
*
r by an sngle

If the linear element

-1 R2
X . tan

&
(14)

of length along the hodograph is denoted by ds
then the absolute value of ds/dcp is given by

Thanks to the formulae developed in the preceding sections the
drawing in of the tangent to the hodograph at the point P, situated on
this hodograph, is therefore made possible, since everything is known
about the point P. If the element of length along the hodograph is
calculated as

then it is easy to find another neighboring point P’. When used repe-
titiously in the various semiplanes, this procedure allows one to determine
the respective holographs as the envelope of their tangent lines.

The angle of intersection da with respect to the direction of the
linbar element of the hodograph ds is thus determined by

I
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~=@ H&J’-R1f;;22)

The radius of curvature of the hodograph at the point P just
mentioned turns out to be consequently

When the point P’ is determined in.the manner that
above, in consequence of having available all information
point P, it follows that RI and ~ are also known at

(15)

was described
about the known
the point P’,

dR1
and thus the values of — and ~ are calculable. Through means of

m dq

equation (15) the radius of curvature ~ is then determined, using

ml
these values of — and ~. The direction of the principal normal

@ *
as defined by equation (14) is also known, and thus the hodograph cam
be obtained in every meridional semiplane as the envelope of the respec-
tive osculatory circles.

6. The results obtained here for the determination of the conical
field of flow in the case of rotational motion are employed in @ exactly
analogous way as described, in reference 2 when making a numerical appli-
cation. In general it will be convenient to assume as the reference
surface, X, upon which the initial values are taken to be known, the
conical surface of the shock wave. The required information about the
shock wave may be obtained in first approximation by utilization of the
hypothesis that the flow is irrotational.

Translated by R. H. Cramer
Cornell Aeronautical Laboratory, Inc.
Buffalo, New York
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Figure l.- Coordinate and vectorialorientationin the sphericalcoordinate
system.

//

“x

Figure 2.- C obstruction in the hodograph plane for finding velocities at
P‘ when they are known at P.
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